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ABSTRACT 
Hans Scheerer proved that if two simply connected compact Lie groups are 
homotopically equivalent, then the groups are isomorphic. We give a conceptu- 
ally simpler proof which shows that the result depends only on the 2 and 3 
primary homotopy of the Lie groups. 

1. The Main Theorem 

In [9] Hans Scheerer proved, 

THEOREM 1. Let L and M be compact, connected, simply connected Lie 

groups. Assume that the spaces of L and M are homotopically equivalent. Then L 

and M are isomorphic Lie groups. 

The proof given in [9] is not difficult but it gives little insight into why the 
result should be true. In this note we show how the theory of Finite H-spaces 

helps in understanding Theorem 1. 
The proof of [9] and that given below both assume the known classification of 

simple Lie groups. Ideally one would like to give a proof which does not, but as it 
is not known how to recognize Lie groups among topological groups which have 

the homotopy types of closed smooth manifolds it is not clear how such a proof 

would proceed. The idea behind our proof is simple. We know that each Lie 

group as in Theorem 1 is isomorphic to an essentially unique finite direct product 

of simple Lie groups. We seek a corresponding unique cartesian product 

factorization theorem in homotopy and such results rarely exist. But when a 

simply connected Finite H-space is localized at a prime it does factorize uniquely 

into indecomposable H-spaces. Further at the prime 2, the localization of almost 
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all the simple Lie groups are indecomposable and have distinct homotopy types. 
As localization preserves cartesian products, but for the "almost all" in the last 

sentence, the theorem follows. 

2. The simple Lie groups 

The symbol G will be reserved for a compact, connected simply connected Lie 

group. 

THEOREM 2.1. A non-trivial G is isomorphic to a finite direct product of groups 

taken from the following list: 
(a) SU(n + 1), n > 1; the group of complex (n + 1) x (n + 1)-matrices A satis- 

fying Afi~ t = I, and det A = 1, 
(b) Sp(m), m > 2; the group of quaternionic ( m x  m)-matrices B satisfying 

BB '  = I, 

(c) Spin(q), q => 7; the group which is the double and therefore the universal 

covering of the group of rotations SO(q), 
(d) G2, F4, E~, E7 and E~; the five exceptional simply connected Lie groups. 

A discussion of this theorem can be found in Chapter XXI of [4]. 

The cohomology rings with Z2-coetticients of these simple groups were 
calculated by the efforts of several mathematicians, particularly Borel and Araki 
in the. 1950% and early 1960's. Convenient references are [10] for the classical 
groups and [11] for the exceptional groups. 

THEOREM 2.2. (a) H*(SU(n + 1), Z:) ~- A(x3, x5 . . . . .  x2,.~), an exterior 

algebra over Z2 on generators x2i+~ of dimension 2i + 1. 

(b) n*(Sp(m) ,  Z2) ~ A(x3, x7 . . . . .  x4,,-1). 
(c) H*(Spin(q), Z 2 ) -  Z2[x3, xs . . . . .  x2~+1, y2,-1]/I where 2s + 1 < q <= 2s + 3 

and t = 2 ~ if 2" < q <-_ 2 "+1. The ideal I is generated by y~,_~ and for each i by x~+l 

where ot is the smallest integer such that (2i + 1)2 ~ => q. 
In (a), (b) and (c), the action of the Steenrod squares on the generators x2j+l is 

determined by formula 

~, = [ 2 j + 1 )  
Sq X2/+l ~ 2i X2i+2j+1 

with the usual convention that if there is no generator of dimension 2i + 2j + 1, 
then X2i+Zj+l = O. 

(d) H*(G2, Z2)------ Z2[x3, xs]/(x 4, x~), 

H*(F4, Z2) = Z2[x3, Xs, x15, xi3]/(x]; x~, i > 3), 
H*(E6,Z2) -=- Z2[x3,xs, x 4. 9, X,5, X17, X23]/(X3, Xi, i > 3), 
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H * ( E 7 ,  Z2) ~ Z2[x3, xs, x9, x,5, XlT, x23, x271/(x~, x~, x4; x 2, i > 9) 

H*(Es, Z2) ~ Z2[x3, xs, xg, xi5, xi7, x23, x27, x2~]/(x 16, x .~, x 4, x%; x~, i > 15). 

It is always true that Sq2x3 = Xs. For F4, E6, E7 andEs, one has SqSx~5 = x23. For 

E~, ET, Es, one also has Sqnx5 = x~, SqSx~ = x,7, Sq2x~5 = x,7. For E~ and Es, one 

has Sq4x23 = xz7 while for Ex, Sq2x27 = x2,. 

An immediate conclusion to be drawn from Theorem 2.2 is that different 

simple Lie groups have distinct homotopy types. However, if one compares the 

cohomology of say SU(2)x SU(4) and Sp(2)x SU(3) or more significantly, 

Spin(7) x Spin(7) and G2 × Spin(8) one sees that they are isomorphic as algebras 

over the Steenrod algebra. 

3. Indecomposable spaces 

An H-space X or (X, e, m) is a triple with X a topological space, e a base 

point in X and m : X × X---> X a continuous multiplication such that m(e, ) -  

I d e n t i t y - m (  , e ) : X - - > X .  If X is an H-space and Y ~ - X ,  then Y is an 

H-space. Clearly G is an H-space and so is a localization at a prime p [7]. We 

will consider G localized at the prime 2. 
A non-trivial space or homotopy type W is indecomposable if W - W~ x W2 

implies that one of Wj or W2 is homotopically trivial. 

The following theorem is of some independent interest although the result will 

not come as a surprise to some mathematicians. 

THEOREM 3. Let G be a non-trivial simple Lie group localized at the prime 2. 

(a) If G ~ Spin(7) or Spin(8), then it is indecomposable. 

(b) Spin(7) = G2 x S 7. 

(c) Spin(8) = G2 x S 7 x S 7. 

There is more than one way of approaching the proof depending upon what 

further results one chooses to quote from the literature. We will assume certain 

classical results about elements of Hopf invariant one and some generalizations. 

Thus if X is a simply connected H-space and H*(X, Z2)~ A(x2i+l), then at the 

prime 2, X = S 3 or  S 7, [1] or [3]. If H*(X, Z2) ~ A(x2i+,, x2;+1), it is known that at 
the prime 2, X = S 3 x S 3, S 3 × S 7, S 7 × S ~, SU(3) or Sp(2): For our purposes, we 

will only need to know that {2i + 1,2j + 1} = {3,3}, {3, 5}, {3,7} or {7,7} [21 and [5] 

and, to shorten one argument, that if {3, 5} = {2i + 1,2j + 1} then X = SU(3) [6]. 

We will also quote some standard results about principal fibre bundles of Lie 

groups. Except when considering fibrations, it will be assumed that all spaces are 

localized at the prime 2 which leaves the mod 2 cohomology rings unaffected. 
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PROOF OF THEOREM 3. Let G be a simple Lie group and suppose that 

G = X x Y; so X and Y are H-spaces.  Now H3(G, Z2) ~ Z2 and H*(G, Z2) 
H*(X,  Z 2 ) ~ ) H * ( Y ,  Z2), so we can assume that Ha(x ,  Z 2 ) ~  Z2 and H3( Y, Z2) 

0. To prove that Y is trivial it is sufficient to show that H ~ (Y, Z2) = 0 for i > 0. 

The proof of Theorem 3 considers H*(G, Z2) for simple groups case by case. It 

will follow easily that 

H*(Y, Z~) = A(x~. + , , . . . ,  x2~.,) 

or is trivial and we write t ( Y ) =  {2a + 1 . . . . .  2w + 1} or ~b respectively. 

(a) SU(n + 1), n _-> 1. We check that as x3 E H3(X, Z:), so does each x:i+l, 

except possibly x2,+1 if 2n + 1 = 2 4 - 1. For if 2i + 1 ~ 2  ~ - 1, we can write 

2 i + 1 = 2  s + ( 2 j + l )  where 0_-<2j<2  s - 2  and so Sq2J+2x2~=x2~+~. Also if 

2 S - l f i 2 n + l  and s > 2 ,  

Sq4x2 s 3 = Sq2x2~-, = x2~+, ~ O. 

But if x2j+~ E H*(X, Z2) then so does Sq2kx~j+j for all k and so a routine inductive 

argument  implies that t (Y)  = th or, if 2n + 1 = 2 ~-1, t (Y)  C {2n + 1}. The com- 

ments on the Hopf  invariant above imply that t (Y )=  ~b unless 2n + 1 = 7. So it 

remains only to show that SU(4) is indecomposable.  But if SU(4) -~ X × S ~ then 

H*(X, Z2) ~ A(x3, xs) and so X ~ SU(3). The characteristic map of the principal 

frbration SU(3)---~ SU(4)---~ S ~ has order 6 in 7r6 (SU(3))"=- Z6 and so at the prime 

2, S U ( 4 ) ~  SU(3)x  S 7. This contradiction implies the result. 

(b) Sp(m),  m -_> 2. We show first that Sp(2) is indecomposable.  The charac- 

teristic map of the principal fibration S 3= Sp(1)--~ Sp(2)--~ S 7 has order 12 in 

~'6(S 3) ~ Z12 and so in the cellular decomposit ion Sp(2) = S 3 U e ~ U e ~°, the seven 

cell is attached in an essential manner  mod 2. Therefore  Sp(2) is indecomposa- 

ble. Also as the 7-skeleton of Sp(n)  for n > 2 is the same as that of Sp(2), the 

seven cell is always attached in an essential manner  mod 2. Therefore  7 ~ t (Y)  
for any n. Now using the Steenrod algebra and arguing as in (a) we deduce that 

t (Y)  = ~b for all n = 2. 

(c) Spin(q), q = 7. Again the Steenrod squares are used as in (a) and (b), but 

this time there is the additional generator  y2,-1 to consider. The three cases 

2 s-~ + 1 < q < 2% q = 2 ~ and q = 2 ' + 1 are considered separately. 

In the first case t = 2 ~ 1 and t (Y)  C{2 ' - 1}. Therefore  t (Y)  = 4~ unless q = 7. 

The principal fibration G2--* S p i n ( 7 ) ~  S ~ is classified by a generator  of 7r6(G2) -~ 

Z3 which is trivial rood 2. Therefore  Spin(7)-~ Gz x S% 
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If q = 2  s, then t = 2  s-~ and t ( Y ) C { 2 S - l , 2 ~ - l } .  Therefore t (Y)=~b or 

Y = S 2~-1 or S 2'-~ x S 2'-~. In both the latter cases S 2"-1 is a mod 2 H-space and so 

t (Y)  = ~b unless q = 8. But Spin(8) is homeomorphic to Spin(7)× S ~ and so 
Spin(8) - G2 × S 7 x S ~. 

If q = 2 S + l ,  then t = 2  s and t (Y)C{2S- l ,2S+~- l} .  Therefore t (Y)=~b 

unless q = 9. Now t ( Y ) ~  {15} and t ( Y ) ~  {7, 15}. Also t (Y)  = {7} is impossible, 

although this is the least obvious fact in this proof. For if Spin(9) = X x S 7, we 

have for each i, ~-,(Spin(9))~ 7r~(X)OTr,(S~). Consulting the tables given on 

page 25 of [9], we see that 7r2ffSpin(9)) = (Z2) 2 @ (Zs) ~. But zr2dS v) ~ (Z2) 3 O Zs, 

which is impossible. 

(d) If G is G2, E6, E~ or E8 then once more using the Steenrod algebra, we see 

that t(Y) = ~b. If G = F4 then t(Y) C {15, 23} which is impossible unless t(Y) = ~b. 

This completes the proof of Theorem 3. 

4. Unique factorization 

We specialize to our needs Theorem l(i) or Theorem 2 of [12]. 

THEOREM 4. Let X be a non-contractible 1-connected H-space with the 

homotopy type of a finite complex. Then the p-localization of X at a prime p is 
homotopically equivalent to a finite cartesian product IJX~ where the X~ are 
indecomposable spaces which are unique up to homotopy type and the ordering of 

the factors. 

Now let L and M be homotopically equivalent Lie groups as in Theorem 1. 

We express L and M as direct products of simple Lie groups of types (a), (b), (c) 

and (d). We localize at the prime 2 using the fact that localization preserves 

products. By Theorem 4 and Theorem 3 the localizations of both L and M are 

equivalent to identical products of spaces of types (a)' SU(n + 1), n _-> 1, (b)' 

Sp(m), m => 2, (c)' Spin(q), q => 9, (d)' G2, F4, E6, ET, E8, and (e)' S 7. Each factor 

in this decomposition other than G2 or S 7 can arise only from the corresponding 

factor in the Lie group decomposition. Therefore we can write L = N × L1 and 

M ~ N x M~ where L1 and MI are direct products of groups G2, Spin(7) and 

Spin(8). 

5. The proof of Theorem I 

One can complete the proof by noticing that if one localizes at the prime 3 and 

expresses G as a product of indecomposable factors, then the number of S 7 
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factors present equals the number of Spin(8) factors in the Lie group decomposi- 

tion. A variant of this argument is as follows. 

Recall that 

(1) H*(G2, Z~) ~ A(x3, x,,), 

(2) H*(Spin(7), Z@) ~- A(x,, xT, x,,) and 

(3) H*(Spin(8), Z3) ~ A(x~, xT, x,,, Y0. 

In (2) and (3), ~ x ,  = x~. This follows from the Steenrod module isomorphisms: 

H*(Spin(2r + 1); Z 0 ~ H*(Sp(r); Z3), 

H*(Spin(2r + 2); Z3) = H*(Sp(r) × S2r+'; Z3), 

plus our analysis of Sp(n) in Part 3 which shows that seven cell is attached in an 

essential manner rood 3, not just rood 2. It follows that the number of Spin(8) 

factors in any G which is isomorphic to a direct product of groups G~, Spin(7) 

and Spin(8) equals the dimension of the cokernal of ~ : H3(G, Z3)--* HV(G, Z3), 

in particular this is true for L~ and M~. As 

and 

H*(L, Z3) = H*(N, Z3)@ H*(/I, 23) 

H*(M, Z3) =- H*(N, L )  @ H*(M,, Z3), 

it follows that L and M have the same number of Spin (8) factors. 

Once more considering the 2-1ocalizations of L and M, as the S 7 factors arise 

only from Spin(7) and Spin(8), it follows that L and M have the same number of 

Spin(7) factors. Therefore they have the same number of G2 factors. Therefore 

L-= M as required. 

Finally we note that in Theorem l, the hypothesis that L = M could be 

weakened to L ---2 M and L --3 M. Indeed this is the best possible result as if 

p;~ 2, SU(2) x SU(4)=p SU(3) x Sp(2) and if p #  3, G2 x Spin(8)--p Spin(7) x 

Spin(7). 
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